Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The Iron-Dependent Regulation of the Candida albicans Oxidative Stress Response by the CCAAT-Binding Factor.

Identifieur interne : 000304 ( Main/Exploration ); précédent : 000303; suivant : 000305

The Iron-Dependent Regulation of the Candida albicans Oxidative Stress Response by the CCAAT-Binding Factor.

Auteurs : Ananya Chakravarti [États-Unis] ; Kyle Camp [États-Unis] ; David S. Mcnabb [États-Unis] ; Inés Pinto [États-Unis]

Source :

RBID : pubmed:28122000

Descripteurs français

English descriptors

Abstract

Candida albicans is the most frequently encountered fungal pathogen in humans, capable of causing mucocutaneous and systemic infections in immunocompromised individuals. C. albicans virulence is influenced by multiple factors. Importantly, iron acquisition and avoidance of the immune oxidative burst are two critical barriers for survival in the host. Prior studies using whole genome microarray expression data indicated that the CCAAT-binding factor is involved in the regulation of iron uptake/utilization and the oxidative stress response. This study examines directly the role of the CCAAT-binding factor in regulating the expression of oxidative stress genes in response to iron availability. The CCAAT-binding factor is a heterooligomeric transcription factor previously shown to regulate genes involved in respiration and iron uptake/utilization in C. albicans. Since these pathways directly influence the level of free radicals, it seemed plausible the CCAAT-binding factor regulates genes necessary for the oxidative stress response. In this study, we show the CCAAT-binding factor is involved in regulating some oxidative stress genes in response to iron availability, including CAT1, SOD4, GRX5, and TRX1. We also show that CAT1 expression and catalase activity correlate with the survival of C. albicans to oxidative stress, providing a connection between iron obtainability and the oxidative stress response. We further explore the role of the various CCAAT-binding factor subunits in the formation of distinct protein complexes that modulate the transcription of CAT1 in response to iron. We find that Hap31 and Hap32 can compensate for each other in the formation of an active transcriptional complex; however, they play distinct roles in the oxidative stress response during iron limitation. Moreover, Hap43 was found to be solely responsible for the repression observed under iron deprivation.

DOI: 10.1371/journal.pone.0170649
PubMed: 28122000
PubMed Central: PMC5266298


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The Iron-Dependent Regulation of the Candida albicans Oxidative Stress Response by the CCAAT-Binding Factor.</title>
<author>
<name sortKey="Chakravarti, Ananya" sort="Chakravarti, Ananya" uniqKey="Chakravarti A" first="Ananya" last="Chakravarti">Ananya Chakravarti</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas</wicri:regionArea>
<placeName>
<region type="state">Arkansas</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas</wicri:regionArea>
<placeName>
<region type="state">Arkansas</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Camp, Kyle" sort="Camp, Kyle" uniqKey="Camp K" first="Kyle" last="Camp">Kyle Camp</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas</wicri:regionArea>
<placeName>
<region type="state">Arkansas</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mcnabb, David S" sort="Mcnabb, David S" uniqKey="Mcnabb D" first="David S" last="Mcnabb">David S. Mcnabb</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas</wicri:regionArea>
<placeName>
<region type="state">Arkansas</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas</wicri:regionArea>
<placeName>
<region type="state">Arkansas</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Pinto, Ines" sort="Pinto, Ines" uniqKey="Pinto I" first="Inés" last="Pinto">Inés Pinto</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas</wicri:regionArea>
<placeName>
<region type="state">Arkansas</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas</wicri:regionArea>
<placeName>
<region type="state">Arkansas</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28122000</idno>
<idno type="pmid">28122000</idno>
<idno type="doi">10.1371/journal.pone.0170649</idno>
<idno type="pmc">PMC5266298</idno>
<idno type="wicri:Area/Main/Corpus">000373</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000373</idno>
<idno type="wicri:Area/Main/Curation">000373</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000373</idno>
<idno type="wicri:Area/Main/Exploration">000373</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The Iron-Dependent Regulation of the Candida albicans Oxidative Stress Response by the CCAAT-Binding Factor.</title>
<author>
<name sortKey="Chakravarti, Ananya" sort="Chakravarti, Ananya" uniqKey="Chakravarti A" first="Ananya" last="Chakravarti">Ananya Chakravarti</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas</wicri:regionArea>
<placeName>
<region type="state">Arkansas</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas</wicri:regionArea>
<placeName>
<region type="state">Arkansas</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Camp, Kyle" sort="Camp, Kyle" uniqKey="Camp K" first="Kyle" last="Camp">Kyle Camp</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas</wicri:regionArea>
<placeName>
<region type="state">Arkansas</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mcnabb, David S" sort="Mcnabb, David S" uniqKey="Mcnabb D" first="David S" last="Mcnabb">David S. Mcnabb</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas</wicri:regionArea>
<placeName>
<region type="state">Arkansas</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas</wicri:regionArea>
<placeName>
<region type="state">Arkansas</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Pinto, Ines" sort="Pinto, Ines" uniqKey="Pinto I" first="Inés" last="Pinto">Inés Pinto</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas</wicri:regionArea>
<placeName>
<region type="state">Arkansas</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas</wicri:regionArea>
<placeName>
<region type="state">Arkansas</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>CCAAT-Binding Factor (genetics)</term>
<term>CCAAT-Binding Factor (metabolism)</term>
<term>Candida albicans (metabolism)</term>
<term>Catalase (genetics)</term>
<term>Catalase (metabolism)</term>
<term>Fungal Proteins (genetics)</term>
<term>Fungal Proteins (metabolism)</term>
<term>Gene Expression Regulation, Fungal (MeSH)</term>
<term>Glutaredoxins (genetics)</term>
<term>Glutaredoxins (metabolism)</term>
<term>Iron (metabolism)</term>
<term>Oxidative Stress (physiology)</term>
<term>Superoxide Dismutase (genetics)</term>
<term>Superoxide Dismutase (metabolism)</term>
<term>Thioredoxins (genetics)</term>
<term>Thioredoxins (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Candida albicans (métabolisme)</term>
<term>Catalase (génétique)</term>
<term>Catalase (métabolisme)</term>
<term>Facteur de liaison à la séquence CCAAT (génétique)</term>
<term>Facteur de liaison à la séquence CCAAT (métabolisme)</term>
<term>Fer (métabolisme)</term>
<term>Glutarédoxines (génétique)</term>
<term>Glutarédoxines (métabolisme)</term>
<term>Protéines fongiques (génétique)</term>
<term>Protéines fongiques (métabolisme)</term>
<term>Régulation de l'expression des gènes fongiques (MeSH)</term>
<term>Stress oxydatif (physiologie)</term>
<term>Superoxide dismutase (génétique)</term>
<term>Superoxide dismutase (métabolisme)</term>
<term>Thiorédoxines (génétique)</term>
<term>Thiorédoxines (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>CCAAT-Binding Factor</term>
<term>Catalase</term>
<term>Fungal Proteins</term>
<term>Glutaredoxins</term>
<term>Superoxide Dismutase</term>
<term>Thioredoxins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>CCAAT-Binding Factor</term>
<term>Catalase</term>
<term>Fungal Proteins</term>
<term>Glutaredoxins</term>
<term>Iron</term>
<term>Superoxide Dismutase</term>
<term>Thioredoxins</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Catalase</term>
<term>Facteur de liaison à la séquence CCAAT</term>
<term>Glutarédoxines</term>
<term>Protéines fongiques</term>
<term>Superoxide dismutase</term>
<term>Thiorédoxines</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Candida albicans</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Candida albicans</term>
<term>Catalase</term>
<term>Facteur de liaison à la séquence CCAAT</term>
<term>Fer</term>
<term>Glutarédoxines</term>
<term>Protéines fongiques</term>
<term>Superoxide dismutase</term>
<term>Thiorédoxines</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Stress oxydatif</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Oxidative Stress</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Regulation, Fungal</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Régulation de l'expression des gènes fongiques</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Candida albicans is the most frequently encountered fungal pathogen in humans, capable of causing mucocutaneous and systemic infections in immunocompromised individuals. C. albicans virulence is influenced by multiple factors. Importantly, iron acquisition and avoidance of the immune oxidative burst are two critical barriers for survival in the host. Prior studies using whole genome microarray expression data indicated that the CCAAT-binding factor is involved in the regulation of iron uptake/utilization and the oxidative stress response. This study examines directly the role of the CCAAT-binding factor in regulating the expression of oxidative stress genes in response to iron availability. The CCAAT-binding factor is a heterooligomeric transcription factor previously shown to regulate genes involved in respiration and iron uptake/utilization in C. albicans. Since these pathways directly influence the level of free radicals, it seemed plausible the CCAAT-binding factor regulates genes necessary for the oxidative stress response. In this study, we show the CCAAT-binding factor is involved in regulating some oxidative stress genes in response to iron availability, including CAT1, SOD4, GRX5, and TRX1. We also show that CAT1 expression and catalase activity correlate with the survival of C. albicans to oxidative stress, providing a connection between iron obtainability and the oxidative stress response. We further explore the role of the various CCAAT-binding factor subunits in the formation of distinct protein complexes that modulate the transcription of CAT1 in response to iron. We find that Hap31 and Hap32 can compensate for each other in the formation of an active transcriptional complex; however, they play distinct roles in the oxidative stress response during iron limitation. Moreover, Hap43 was found to be solely responsible for the repression observed under iron deprivation.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28122000</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>08</Month>
<Day>09</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>12</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2017</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>The Iron-Dependent Regulation of the Candida albicans Oxidative Stress Response by the CCAAT-Binding Factor.</ArticleTitle>
<Pagination>
<MedlinePgn>e0170649</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0170649</ELocationID>
<Abstract>
<AbstractText>Candida albicans is the most frequently encountered fungal pathogen in humans, capable of causing mucocutaneous and systemic infections in immunocompromised individuals. C. albicans virulence is influenced by multiple factors. Importantly, iron acquisition and avoidance of the immune oxidative burst are two critical barriers for survival in the host. Prior studies using whole genome microarray expression data indicated that the CCAAT-binding factor is involved in the regulation of iron uptake/utilization and the oxidative stress response. This study examines directly the role of the CCAAT-binding factor in regulating the expression of oxidative stress genes in response to iron availability. The CCAAT-binding factor is a heterooligomeric transcription factor previously shown to regulate genes involved in respiration and iron uptake/utilization in C. albicans. Since these pathways directly influence the level of free radicals, it seemed plausible the CCAAT-binding factor regulates genes necessary for the oxidative stress response. In this study, we show the CCAAT-binding factor is involved in regulating some oxidative stress genes in response to iron availability, including CAT1, SOD4, GRX5, and TRX1. We also show that CAT1 expression and catalase activity correlate with the survival of C. albicans to oxidative stress, providing a connection between iron obtainability and the oxidative stress response. We further explore the role of the various CCAAT-binding factor subunits in the formation of distinct protein complexes that modulate the transcription of CAT1 in response to iron. We find that Hap31 and Hap32 can compensate for each other in the formation of an active transcriptional complex; however, they play distinct roles in the oxidative stress response during iron limitation. Moreover, Hap43 was found to be solely responsible for the repression observed under iron deprivation.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Chakravarti</LastName>
<ForeName>Ananya</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Camp</LastName>
<ForeName>Kyle</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>McNabb</LastName>
<ForeName>David S</ForeName>
<Initials>DS</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pinto</LastName>
<ForeName>Inés</ForeName>
<Initials>I</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-4384-986X</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>01</Month>
<Day>25</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D023081">CCAAT-Binding Factor</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>52500-60-4</RegistryNumber>
<NameOfSubstance UI="D013879">Thioredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>E1UOL152H7</RegistryNumber>
<NameOfSubstance UI="D007501">Iron</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.6</RegistryNumber>
<NameOfSubstance UI="D002374">Catalase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.15.1.1</RegistryNumber>
<NameOfSubstance UI="D013482">Superoxide Dismutase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D023081" MajorTopicYN="N">CCAAT-Binding Factor</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002176" MajorTopicYN="N">Candida albicans</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002374" MajorTopicYN="N">Catalase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015966" MajorTopicYN="Y">Gene Expression Regulation, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007501" MajorTopicYN="N">Iron</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018384" MajorTopicYN="N">Oxidative Stress</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013482" MajorTopicYN="N">Superoxide Dismutase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013879" MajorTopicYN="N">Thioredoxins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<CoiStatement>The authors have declared that no competing interests exist.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>11</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>01</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>1</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>1</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>8</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28122000</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0170649</ArticleId>
<ArticleId IdType="pii">PONE-D-16-46918</ArticleId>
<ArticleId IdType="pmc">PMC5266298</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Antioxid Redox Signal. 2013 May 1;18(13):1699-711</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23198979</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1990;188:463-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2177828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Jul 15;286(28):25154-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21592964</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Cell Biol. 1989;5:153-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2557058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2013 Dec;16(6):669-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23916750</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2005 Oct;4(10):1662-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16215174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2011 Feb;10(2):207-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21131439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1987;57(2-3):267-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3319781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Immunol. 2012 Jan;56(1):48-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22040121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biometals. 2002 Dec;15(4):341-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12405527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2009 Dec;5(12):e1000783</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20041210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Apr 22;111(16):5866-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24711423</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genet Mol Res. 2007 Oct 05;6(4):1051-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18273798</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1995 Jan 1;9(1):47-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7828851</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Yeast Res. 2009 Oct;9(7):1000-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19788558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Immunol. 2009 Feb;21(1):63-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19231148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1999 Oct 18;239(1):15-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10571030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 2014 Jul 24;124(4):590-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24948657</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2009 Feb;155(Pt 2):413-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19202089</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mem Inst Oswaldo Cruz. 2012 Dec;107(8):998-1005</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23295749</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2010 Oct;30(19):4550-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20679492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Immunol. 2015 Jan;293(1):22-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25497972</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Microbiol. 2014 Nov;69(5):733-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25002360</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Rev. 1992 Mar;56(1):1-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1579104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Inorg Chem. 2014 Jun;19(4-5):595-603</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24043471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1999 Feb;181(3):700-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9922230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2008 Jul;7(7):1168-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18503007</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Immunol. 2005;49(10):937-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16237272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2009 Jul;1790(7):600-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18675317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Sep 22;275(38):29187-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10882731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2010 Sep 30;6(9):e1001124</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20941352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2003 Apr;2(2):351-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12684384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1999 Mar;181(6):1868-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10074081</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2007 Jul 11;26(13):3157-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17568774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2008 Nov;1780(11):1217-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18178164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Signal. 2011 Sep 27;4(192):ra63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21954289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2010 Nov 24;6(11):e1001209</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21124817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Biol. 2014 Jan 1;217(Pt 1):144-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24353214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2006 Apr 1;40(7):1201-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16545688</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Nov 23;276(47):43784-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11562375</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 1998 May;66(5):1953-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9573075</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2014 Apr 15;4:4697</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24732094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2014 Oct 02;10(10):e1004407</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25275454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2002 Apr;13(4):1109-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11950925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2002 Nov;148(Pt 11):3705-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12427960</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2008 May;7(5):814-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18375620</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 Mar;38(4):1098-113</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19965775</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1993 Jul;134(3):717-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8349105</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2014 Oct 1;33(19):2261-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25092765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomolecules. 2015 Feb 25;5(1):142-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25723552</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1997 Oct 24;278(5338):680-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9381177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Cells. 1998 Aug;3(8):485-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9797451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2003 Apr;14(4):1460-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12686601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1996 Apr;178(7):1842-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8606156</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Microbiol. 2008 Jun;16(6):261-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18467097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2009 Aug;12(4):377-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19540796</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 2003 Aug;20(11):929-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12898709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2007 Jul 31;581(19):3598-607</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17659286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Apr 22;9(4):e96203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24755669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 2001 Mar 15;18(4):301-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11223939</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2009 Jan;71(1):240-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19019164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2013 Jun;12(6):804-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23543673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Apr 21;275(16):11645-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10766782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2011 Aug 18;10(2):118-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21843869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2006 Feb;17(2):1018-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16339080</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1989 Aug;3(8):1166-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2676721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2014 Jul 15;5(4):e01334-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25028425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2005 Nov;4(11):1829-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16278450</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Arkansas</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Arkansas">
<name sortKey="Chakravarti, Ananya" sort="Chakravarti, Ananya" uniqKey="Chakravarti A" first="Ananya" last="Chakravarti">Ananya Chakravarti</name>
</region>
<name sortKey="Camp, Kyle" sort="Camp, Kyle" uniqKey="Camp K" first="Kyle" last="Camp">Kyle Camp</name>
<name sortKey="Chakravarti, Ananya" sort="Chakravarti, Ananya" uniqKey="Chakravarti A" first="Ananya" last="Chakravarti">Ananya Chakravarti</name>
<name sortKey="Mcnabb, David S" sort="Mcnabb, David S" uniqKey="Mcnabb D" first="David S" last="Mcnabb">David S. Mcnabb</name>
<name sortKey="Mcnabb, David S" sort="Mcnabb, David S" uniqKey="Mcnabb D" first="David S" last="Mcnabb">David S. Mcnabb</name>
<name sortKey="Pinto, Ines" sort="Pinto, Ines" uniqKey="Pinto I" first="Inés" last="Pinto">Inés Pinto</name>
<name sortKey="Pinto, Ines" sort="Pinto, Ines" uniqKey="Pinto I" first="Inés" last="Pinto">Inés Pinto</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000304 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000304 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:28122000
   |texte=   The Iron-Dependent Regulation of the Candida albicans Oxidative Stress Response by the CCAAT-Binding Factor.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:28122000" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020